
APPLICATION NOTE

Xport 2.0 eCos and RedBoot

Version 1.2, June 29, 2004

Summary

This application note explains how to use eCos and Redboot with the Xport 2.0. Remote debugging using GDB is also
explained.

Xport 2.0 eCos and RedBoot 1

Introduction

eCos is a powerful, free, open source, real-time OS for
embedded applications. Some eCos features:

• Preemptive multi-threading

• Configurable scheduling

• Synchronization objects

• Timers, counters, alarms, mailboxes

• ISR/DSR interrupt handling

• Efficient implementations of ISO C and math
libraries

• GDB debug support

• Very small memory footprint (30K typical)

Using eCos simply entails linking to the runtime libraries.

Quickstart

Following these steps provides a quick demo of source level
debugging of a simple eCos multi-threaded example.
Execute the following steps from within the Xport Shell.

1. Upload RedBoot into the Xport.

cd $XPORTDIR/examples/ecos/redboot
make upload

2. Run GDB.

cd $XPORTDIR/examples/ecos/twothreadsram
arm-agb-elf-gdb twothreads.elf

3. At the GDB prompt type

target remote | xpcomm

4. Wait for the response (or similar)

0x08004010 in ?? ()

5. Load the program into RAM. At the GDB prompt type

load

6. Wait for the program to load.

7. Make a breakpoint. For example, type

break printf

8. Run the twothreads example by typing

continue

9. You are now debugging within GDB. After typing
“continue” (or simply “c”) several times, the twothreads
example will create two threads and begin printing a
steady stream of simple messages. At this point you
may type

info threads

to view the thread table. (The GDB stubs in RedBoot
are thread-aware.)

10. Typing “quit” will exit GDB.

The above steps don’t even scratch the surface when it
comes to exploiting the power of GDB. If you are
unfamiliar with GDB, you can find the documentation here:

http://www.gnu.org/manual/GDB/

You may have noticed when debugging twothreads that
some of the debugging information is missing – namely the
source code. Since eCos and twothreads were compiled
elsewhere, GDB cannot locate the source code, which has
surely moved. Recompiling will update the source code
paths and allow you to view the source code while
debugging.

You can recompile the eCos RAM libraries by typing:

 2 Xport 2.0 eCos and RedBoot

cd $XPORTDIR/src/ecos
make ecosram install

To recompile twothreads:

cd $XPORTDIR/examples/ecos/twothreadsram
make clean
make

You can now go back to step 2 to see how things look with
source code (much better!)

You can use a GDB initialization file that performs the
connection and loading automatically upon invoking GDB.
For example, create a file in your home directory ~/gdb.ini
that contains the text:

target remote | xpcomm
load

Then upon invoking gdb run it with the –x option, such as:

arm-agb-elf-gdb twothreads.elf –x
~/gdb.ini

But don’t bother with this! We have included this
initialization file and a shell script that does all of this
automatically. Simply run it as follows:

rungdb twothreads.elf

These files are included in Xport eCos releases 2.0.12 and
higher.

Insight

Running GDB from within a shell (without a GUI) may be
too archaic for many folks. Insight offers a nice GUI to
more intuitively highlight the many features of GDB. To
debug the twothreads example using Insight, execute the
following steps from within the Xport Shell.

1. Run Insight.

cd $XPORTDIR/examples/ecos/twothreadsram
arm-agb-elf-insight twothreads.elf

2. Bring up the console window by selecting
View→Console from within the toolbar.

3. From within the console window type:

target remote | xpcomm

4. Wait for the response (or similar)

0x08004010 in ?? ()

5. Load the program into RAM. In the console window
type

load

6. Wait for the program to load.

7. Make a breakpoint. For example, type

break printf

8. Run the twothreads example by typing

continue

You are now debugging within Insight. When the program
reaches a breakpoint, you can see the current line of
execution in the source window highlighted in green. Other
windows such as the call stack, thread list, etc can be
displayed by selecting them in the View menu. Having
multiple windows simultaneously displaying the stack,
memory, variables, etc. is one of the most attractive features
of Insight.

We have also included a shell script for Insight that is
similar to rungdb. Simply run it as follows:

runinsight twothreads.elf

RedBoot

RedBoot is a bootstrap environment that is designed to work
with eCos. It includes GDB stubs for debugging, a flash file
system, and facilities for examining and modifying memory.

RedBoot can be uploaded into the Xport 2.0 by running the
following commands from within the Xport Shell:

cd $XPORTDIR/examples/ecos/redboot
make upload

You can communicate with Redboot through the Cport by
using Xpcomm in console mode. That is, run Xpcomm as

xpcomm –console

Xport User’s Guide 3

when RedBoot is running on the Xport. Typing “help” at
the RedBoot prompt provides a brief synopsis of the
available commands. Refer to the RedBoot documentation
for more detailed information. The documentation is located
in the Start menu
(Start→Programs→Xport→eCos→Redboot User Guide).

Note, when first running RedBoot, it will complain of a
“flash configuration checksum error”. This is because the
flash file system has not been initialized yet. Type “fconfig
–i” at the redboot prompt through the xpcomm console to
initialize the flash file system.

RAM vs ROM targets

In the example above we ran eCos from RAM using
example code linked with the eCos RAM libraries (e.g.
twothreadsram, located in
$XPORTDIR/examples/ecos/twothreadsrom). GDB needs
to modify the code to set breakpoints, so it is necessary that
the code reside in RAM in order for it to be debugged.
Running from RAM has the advantage of being debuggable,
but requires that the code be uploaded upon power-up
through RedBoot.

Alternatively, the same example code can be linked with the
eCos ROM libraries and run from ROM (e.g.
twothreadsrom, located in
$XPORTDIR/examples/ecos/twothreadsrom). This has the
advantage of being automatically executed upon power-up,
but it cannot be debugged with GDB.

Both RAM and ROM libraries are provided precompiled in
the Xport eCos distribution. They are located in
$XPORTDIR/lib/ecos.

Rebuilding eCos and RedBoot

Rebuilding the complete (default) eCos runtime libraries and
RedBoot can be easily accomplished by running the
following in the Xport Shell:

cd $XPORTDIR/src/ecos
make ecosram install

Here, you can replace ecosram with ecosrom or redboot
depending on what you would like to rebuild (or you can
build them all by listing all three.)

eCos Configuration Tool

The eCos Configuration Tool is installed as part of the Xport
eCos distribution. It allows you to customize eCos to your
needs (e.g. change kernel scheduling policy, memory
allocation method, add or remove compilation options, etc.)
The sheer number of options is impressive, and the fact that
they can be modified from within a nice GUI environment is
even more impressive. The tool is located in the Start menu
(Start→Programs→Xport→eCos→Configuration Tool)

To create a custom version of eCos, bring up the
Configuration Tool. From the toolbar, select
Build→Templates to bring up the Templates dialog. In the
Hardware pulldown selection choose Game Boy Advance
with Xport and click OK. By default, this will choose a
RAM configuration for the GBA. If this is the desired
configuration, you can save the new project in an
appropriate location (File→Save). It is recommended that
you save new projects in their own directories as many files
and subdirectories are created.

If you want a ROM configuration, for example, from within
the Configuration pane (the subwindow toward the upper-
left corner of the ConfigTool window) expand eCos
HAL→ARM architecture→GameBoy Advance with Xport.
Then from the Startup type field (under Game Boy Advance
with Xport) you can click on RAM (the current value) and
then change it to ROM. Saving this configuration will result
in a ROM-based eCos configuration. Note, other eCos
configuration parameters can be modified in a similar
manner, if you wish to customize eCos to your needs.

Building newly-created eCos projects is simply a matter of
running "make build" from the <projectname>-build
directory, where <projectname> is the name you assigned to
the project when saving it.

Some notes on printf()

When making calls to printf(), output automatically goes to
the GBA LCD and the Cport. Also note:

• The LCD output can be disabled from the eCos

Configuration Tool (in case you wish to use the LCD for
other purposes, e.g. graphics.)

• For ROM targets, the console data from calls made to
printf(), for example, can be viewed by running
Xpcomm in console mode (xpcomm –console). (Try

 4 Xport 2.0 eCos and RedBoot

uploading the twothreadsrom example and running
“xpcomm –console” for a quick demo of this.)

• Unlike serial ports, outputting to the Cport incurs
negligible overhead when the PC is not listening (that
is, when you are not running Xpcomm in console mode,
handshaking is turned off and writing data to the Cport
from the GBA side is immediate – only the overhead of
a bus cycle is incurred.)

• For RAM targets, the console output appears in the
GDB console window. (That is, console information is
still passed through the Cport, but is mangled so GDB
can parse and display the information.)

Other notes

We like to think of the eCos libraries as a direct replacement
for libc. It provides all of the facilities you usually want
(heap, static constructors/destructors, floating point, math
libraries) and facilities that are important for more complex
applications (multi-threading, synchronization primitives,
timers, alarms, mailboxes.)

Facilities not used are not linked in and do not wind up in
the final elf binary. Thus, no unnecessary overhead is
typically incurred by linking to eCos. Also note, if you
plan on not using multiple threads and do not want the CPU
overhead incurred by preemptive scheduling (granted, the
overhead is small <2%), simply implement the
cyg_user_start() function as your main() function. Not
returning from cyg_user_start() prevents eCos from
launching the scheduler.

Documentation

eCos is well documented. Look in the Start menu
(Start→Programs→Xport→eCos). Here, you will find
several PDF documents as well as an HTML document.

A good starting point is to go to the eCos HTML
documentation and select eCos Reference. This page
contains a good index of the many facilities offered.

Contacting Us

Comments or questions? Please email them to
support@charmedlabs.com.

