APPLICATION NOTE

(Renarmed tans Xport 2.0 RC Servo/GPIO
Configuration

Version 2.0, June 12, 2003 Rich LeGrand (rich@charmedlabs.com)

Summary

This application note explains how to use the RC Servo/GPIO configuration to control up to 30 RC servos and 32 general
purpose 1/0 signals with the X port.

I ntroduction

“RC servos’ were originally designed to control RC models such as airplanes or cars. Because of their low cost and wide
availability, they are also commonly used as microprocessor-controlled actuators. The RC servo has a high-torque output shaft
that can be positioned accurately by supplying a pulse width modulated (PWM) signal. The width of the pulse determines the
commanded position of the servo. The RC servo/GPIO configuration for the Xport synthesizes the PWM signals required for
simultaneous control of up to 30 servos and 32 general purpose I/0 (GPIO) signals.

Usage

Each PWM signa is commanded by an 8-bit value. For convenience, two 8-bit PWM values are combined into 16-bit
registers. Each 8-bit PWM value determines the pulse width of the corresponding PWM signal and hence the commanded
servo position. Table 1 below details these registers and their mapping.

Since each RC-servo tends to require a dightly different pulse-width for the same output shaft position when compared to
another RC-servo of adifferent manufacturer, the supplied pulse width can range from 2.32ms (corresponding to a commanded
PWM value of 0) to 0.37ms (corresponding to a commanded PWM value of 255). These pulse widths typically correspond to
positions that lie outside the possible range of movement for most servos. Thus, it is recommended that the PWM value be
limited in software to correspond with the actual or desired limits of servo travel.

Table 1: RC-Servo Register Block Mapping
Register contents (individual bytes shown)

Name Address Most significant byte (D15® D8) Least significant byte (D7® DO)
RCS0 Ox9ffc400 PAl PAO
RCS1 Ox9ffc402 PA3 PA2
RCS2 Ox9ffc404 PAS5 PA4
RCS3 Ox9ffc406 PA7 PAG6
RC34 0x9ffc408 PA9 PAS8
RCS5 Ox9ffc40a PA11 PA10
RCS6 Ox9ffc40c PA13 PA12
RCS7 Ox9ffc40e PBO PA14
RCS8 0Ox9ffc410 PB2 PB1
RCS9 Ox9ffc412 PB4 PB3
RCS10 0x9ffc414 PB6 PB5
RCS11 0Ox9ffc416 PB8 PB7

Xport 2.0 RC Servo/GPIO Configuration 1

nanm.-dlaas

RCS12 0x9ffc418 PB10 PB9
RCS13 0x9ffc4la PB12 PB11
RCS14 Ox9ffcdlc PB14 PB13

Where PAn = the nth I/O sgnal for PA, PBn = nth I/O signal for PB — see the Connector Pinouts section in the Xport 2.0
User's Manual.

For example, to set the PWM channel corresponding to 1/0 signal PAO to the centermost position, set RCSO as follows:
*((vol atile unsigned short *)0x9ffc400) = 0x0080;

To save FPGA logic, reading the RC servo registers has been disabled and will result in an undefined value when read.

General Purpose 1/0 (GPIO)

Each GPIO signal has two control bits: adirection bit and adata bit. Setting the direction bit to 1 configures the corresponding
I/O signal as an output. Setting the direction bit to O configures the I/O signal as an input. The data bit reflects the logic state
of the corresponding /O signal regardless of whether it is configured as an input or output. For convenience, these bits are
grouped into 16-bit registers. The direction bits collectively form the “data direction registers’ (DDRs) and the data bits form
the “dataregisters’ (DRs). Table 2 below details these registers and their 1/0 signal mapping.

Table 2: GPIO Register Block Mapping

Register contents (individual bits shown)

Name Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DDRO 0x9ffc600 PA30 | PA29 | PA28 | PA27 | PA26 | PA25 | PA24 | PA23 | PA22 | PA21 | PA20 | PA19 | PA18 | PAl17 | PA16 | PA1S

DDR1 0x9ffc602 PB30 | PB29 | PB28 | PB27 | PB26 | PB25 | PB24 | PB23 | PB22 | PB21 | PB20 | PB19 | PB18 | PB17 | PB16 | PB15

DRO 0x9ffc604 PA30 | PA29 | PA28 | PA27 | PA26 | PA25 | PA24 | PA23 | PA22 | PA21 | PA20 | PA19 | PA18 | PAl17 | PA16 | PA1S

DR1 0x9ffc606 PB30 | PB29 | PB28 | PB27 | PB26 | PB25 | PB24 | PB23 | PB22 | PB21 | PB20 | PB19 | PB18 | PB17 | PB16 | PB15

Where PAn = the nth 1/O signal for PA, PBn = nth I/O signal for PB — see the Connector Pinouts section in the Xport 2.0
User's Manual.

For example, to set 1/0 signals PA 15 through PA22 as output and PA 23 through PA30 as input, set DDRO as follows:
*((vol atile unsigned short *)0x9ffc600) = O0xO00ff;

Setting PA15 to PA18 aslogic high and PA19 through PA22 aslogic low, set DRO as follows:

*((volatile unsigned short *)0x9ffc604) = 0x000f;

To read the state of PA23 through PA30, read DRO as follows:

unsi gned short val = *((volatile unsigned short *)O0x9ffc604); /Il read
val >>= 8§; /1 shift down PA23 through PA30 for convenience

Reading data bits that are configured as output should return the previously assigned value, asillustrated below:

*((volatile unsigned short *)0x9ffc600) = Oxffff; /1 set PA1l5 through PA30 as out put
*((volatile unsigned short *)0x9ffc604) = Oxabcd;
if (*((volatile unsigned short *)0x9ffc604)!=0xabcd)

printf(“Error: this should not happen\n”);

2 Xport 2.0 RC Servo/GPIO Configuration

liaﬂlledlaﬂs

Circuitry

Figure 2 below shows a recommended connection diagram for RC servos. It requires a separate 4.5 to 6V power supply for
the servos. The power supply, Xport and servos should share the same ground.

4.51t0 6V (red wire)

PAO . -
Control (white wire)

v .
GND (black wire)
4.5t0 6V (red wire)

PAL

XpOI’t Control (white wire)
v
GND (black wire) []
[]
[]

4.51t0 6V (red wire)

PAn or PBn - .
Control (white wire)

GND
GND (black wire)

Figure 2: RC Servo Connection Diagram

Software

The example software implements the CRCServo class which takes care of setting the limits of travel for the individual servos
and simplifies writing and reading the command values. Figure 1 below describes the member functions of CRCServo.

Figure1: CRCServo Members.

CRCServo(unsigned char num, unsigned short *addr, bool enable=true);
Constructor for CRCServo class.

num Number of channels. This should be 30 to control al channelsin the RC servo configuration.
addr Location of beginning of RC servo register block. This should be 0x9ffc400.
enable Setting this to false will defer the enabling of the channels until later. Setting to true (default) will enable

the PWM clock and thus enable the servos.

Xport 2.0 RC Servo/GPIO Configuration 3

nanm.-dlans

void Disable();
Disable PWM clock, thus disabling servos.

void Enable();
Enable PWM clock, thus enabling servos.

unsigned char GetPosition(unsigned char index);
Get previously commanded position.

index PWM channel index counting from O.

void SetPosition(unsigned char index, unsigned char pos);
Set servo position.
index PWM channel index counting from O.

pos Desired position. This value can range from 0 to 255 with O corresponding to the most counterclockwise
position and 255 corresponding the most clockwise position. SetPosition will take into account the
“bounds’ set in SetBounds, however, the range is aways 0 to 255.

void SetBounds(unsigned char index, unsigned char lower, unsigned char upper);
Set the limits of servo travel.

index PWM channel index counting from 0 — each servo has its own bounds.
lower Lower position bound. Can range from 0 to 255, but must not exceed upper bound.
upper Upper position bound. Can range from 0 to 255 but must not be less than lower bound.
Example
#include "../../include/xport.h"

#include "../../include/textdisp.h"
#i ncl ude "rcservo. h"

extern "C'
{
i nt Main(void);
}
CTextDi sp td;
#defi ne RCSERVO_NUM 30
#defi ne RCSERVO_ADDR 0x9f f c400
#defi ne GPI O_NUM 32
#defi ne GPl O_ADDR 0x9f f c600

#defi ne GPI O_ REG_NUM (GPI O_NUM+15)/ 16

4 Xport 2.0 RC Servo/GPIO Configuration

liaﬂlledlaﬂs

#define GPl O REH i) *((vol atile unsigned short *)GPl O ADDR+i)
#define GPI O _DDR(i) GPl O REE(i)
#defi ne GPI O_DATA(I) GPl O REE(i +GPl O_REG_NUM

i nt Main(voi d)
{

/1 Check to make sure we are using the correct |ogic configuration
i f (XP_REG_| DENTI FI ERl =0x8015)

td.Printf("Incorrect |logic configuration.\n");

whi l e(1);
#if 1
vol atil e unsigned | ong d;
CRCServo servo((unsigned char)RCSERVO NUM (unsigned short *)RCSERVO ADDR);
/1 set bounds -- this varies fromservo to servo
servo. Set Bounds(0, 64, 196);
td.Printf("Servo denp\n");
whi | e(1)
{
/1 nmove maxi num count er -cl ockw se
servo. Set Posi ti on(0, 0x00);
td. Printf("Pos: Ox%\n", servo.CGetPosition(0));
for (d=0; d<1000000; d++);
/1 nove mddle
servo. Set Posi tion(0, 0x80);
td. Printf("Pos: Ox%\n", servo.CGetPosition(0));
for (d=0; d<1000000; d++);
/1 move maxi mum cl ockwi se
servo. Set Posi tion(0, Oxff);
td. Printf("Pos: Ox%\n", servo.CGetPosition(0));
for (d=0; d<1000000; d++);
}
#el se

unsi gned short wite = 0, read;
td.Printf ("GPl O deno\n");
/1 set first 16 GPIO bits to output
GPl O DDR(0) = Oxffff;
wite = 0;
whi | e(1)

{

GPl O DATA(0) = write;

/1 read-back what we just wote
read = GPlI O DATA(O);

if (read!=wite)

{
td. Printf("ERROR Ox% Ox%\n", read, wite);

Xport 2.0 RC Servo/GPIO Configuration

nanm.-dlans

while(1);
if (wite==0)
td.Printf(".");
Write++;
}
#endi f
}

6 Xport 2.0 RC Servo/GPIO Configuration

