
APPLICATION NOTE

Xport 2.0 RC Servo/GPIO
Configuration

Version 2.0, June 12, 2003 Rich LeGrand (rich@charmedlabs.com)

Summary

This application note explains how to use the RC Servo/GPIO configuration to control up to 30 RC servos and 32 general
purpose I/O signals with the Xport.

Xport 2.0 RC Servo/GPIO Configuration 1

Introduction

“RC servos” were originally designed to control RC models such as airplanes or cars. Because of their low cost and wide
availability, they are also commonly used as microprocessor-controlled actuators. The RC servo has a high-torque output shaft
that can be positioned accurately by supplying a pulse width modulated (PWM) signal. The width of the pulse determines the
commanded position of the servo. The RC servo/GPIO configuration for the Xport synthesizes the PWM signals required for
simultaneous control of up to 30 servos and 32 general purpose I/O (GPIO) signals.

Usage

Each PWM signal is commanded by an 8-bit value. For convenience, two 8-bit PWM values are combined into 16-bit
registers. Each 8-bit PWM value determines the pulse width of the corresponding PWM signal and hence the commanded
servo position. Table 1 below details these registers and their mapping.

Since each RC-servo tends to require a slightly different pulse-width for the same output shaft position when compared to
another RC-servo of a different manufacturer, the supplied pulse width can range from 2.32ms (corresponding to a commanded
PWM value of 0) to 0.37ms (corresponding to a commanded PWM value of 255). These pulse widths typically correspond to
positions that lie outside the possible range of movement for most servos. Thus, it is recommended that the PWM value be
limited in software to correspond with the actual or desired limits of servo travel.

Table 1: RC-Servo Register Block Mapping
 Register contents (individual bytes shown)

Name Address Most significant byte (D15→D8) Least significant byte (D7→D0)

RCS0 0x9ffc400 PA1 PA0

RCS1 0x9ffc402 PA3 PA2

RCS2 0x9ffc404 PA5 PA4

RCS3 0x9ffc406 PA7 PA6

RCS4 0x9ffc408 PA9 PA8

RCS5 0x9ffc40a PA11 PA10

RCS6 0x9ffc40c PA13 PA12

RCS7 0x9ffc40e PB0 PA14

RCS8 0x9ffc410 PB2 PB1

RCS9 0x9ffc412 PB4 PB3

RCS10 0x9ffc414 PB6 PB5

RCS11 0x9ffc416 PB8 PB7

 2 Xport 2.0 RC Servo/GPIO Configuration

RCS12 0x9ffc418 PB10 PB9

RCS13 0x9ffc41a PB12 PB11

RCS14 0x9ffc41c PB14 PB13

Where PAn = the nth I/O signal for PA, PBn = nth I/O signal for PB – see the Connector Pinouts section in the Xport 2.0
User’s Manual.

For example, to set the PWM channel corresponding to I/O signal PA0 to the centermost position, set RCS0 as follows:

*((volatile unsigned short *)0x9ffc400) = 0x0080;

To save FPGA logic, reading the RC servo registers has been disabled and will result in an undefined value when read.

General Purpose I/O (GPIO)

Each GPIO signal has two control bits: a direction bit and a data bit. Setting the direction bit to 1 configures the corresponding
I/O signal as an output. Setting the direction bit to 0 configures the I/O signal as an input. The data bit reflects the logic state
of the corresponding I/O signal regardless of whether it is configured as an input or output. For convenience, these bits are
grouped into 16-bit registers. The direction bits collectively form the “data direction registers” (DDRs) and the data bits form
the “data registers” (DRs). Table 2 below details these registers and their I/O signal mapping.

Table 2: GPIO Register Block Mapping
 Register contents (individual bits shown)

Name Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DDR0 0x9ffc600 PA30 PA29 PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16 PA15

DDR1 0x9ffc602 PB30 PB29 PB28 PB27 PB26 PB25 PB24 PB23 PB22 PB21 PB20 PB19 PB18 PB17 PB16 PB15

DR0 0x9ffc604 PA30 PA29 PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16 PA15

DR1 0x9ffc606 PB30 PB29 PB28 PB27 PB26 PB25 PB24 PB23 PB22 PB21 PB20 PB19 PB18 PB17 PB16 PB15

Where PAn = the nth I/O signal for PA, PBn = nth I/O signal for PB – see the Connector Pinouts section in the Xport 2.0
User’s Manual.

For example, to set I/O signals PA15 through PA22 as output and PA23 through PA30 as input, set DDR0 as follows:

*((volatile unsigned short *)0x9ffc600) = 0x00ff;

Setting PA15 to PA18 as logic high and PA19 through PA22 as logic low, set DR0 as follows:

*((volatile unsigned short *)0x9ffc604) = 0x000f;

To read the state of PA23 through PA30, read DR0 as follows:

unsigned short val = *((volatile unsigned short *)0x9ffc604); // read
val >>= 8; // shift down PA23 through PA30 for convenience

Reading data bits that are configured as output should return the previously assigned value, as illustrated below:

*((volatile unsigned short *)0x9ffc600) = 0xffff; // set PA15 through PA30 as output
*((volatile unsigned short *)0x9ffc604) = 0xabcd;
if (*((volatile unsigned short *)0x9ffc604)!=0xabcd)
 printf(“Error: this should not happen\n”);

Xport 2.0 RC Servo/GPIO Configuration 3

Circuitry

Figure 2 below shows a recommended connection diagram for RC servos. It requires a separate 4.5 to 6V power supply for
the servos. The power supply, Xport and servos should share the same ground.

Control (white wire)

4.5 to 6V (red wire)

GND (black wire)

Control (white wire)

4.5 to 6V (red wire)

GND (black wire)

Control (white wire)

4.5 to 6V (red wire)

GND (black wire)

PA0

PA1

PAn or PBn

GND

Xport

Figure 2: RC Servo Connection Diagram

Software

The example software implements the CRCServo class which takes care of setting the limits of travel for the individual servos
and simplifies writing and reading the command values. Figure 1 below describes the member functions of CRCServo.

Figure 1: CRCServo Members.
CRCServo(unsigned char num, unsigned short *addr, bool enable=true);

 Constructor for CRCServo class.

 num Number of channels. This should be 30 to control all channels in the RC servo configuration.

 addr Location of beginning of RC servo register block. This should be 0x9ffc400.

 enable Setting this to false will defer the enabling of the channels until later. Setting to true (default) will enable
the PWM clock and thus enable the servos.

 4 Xport 2.0 RC Servo/GPIO Configuration

void Disable();

 Disable PWM clock, thus disabling servos.

void Enable();

 Enable PWM clock, thus enabling servos.

unsigned char GetPosition(unsigned char index);

 Get previously commanded position.

 index PWM channel index counting from 0.

void SetPosition(unsigned char index, unsigned char pos);

 Set servo position.

 index PWM channel index counting from 0.

 pos Desired position. This value can range from 0 to 255 with 0 corresponding to the most counterclockwise
position and 255 corresponding the most clockwise position. SetPosition will take into account the
“bounds” set in SetBounds, however, the range is always 0 to 255.

void SetBounds(unsigned char index, unsigned char lower, unsigned char upper);

 Set the limits of servo travel.

 index PWM channel index counting from 0 – each servo has its own bounds.

 lower Lower position bound. Can range from 0 to 255, but must not exceed upper bound.

 upper Upper position bound. Can range from 0 to 255 but must not be less than lower bound.

Example

#include "../../include/xport.h"
#include "../../include/textdisp.h"
#include "rcservo.h"

extern "C"
 {
 int Main(void);
 }

CTextDisp td;

#define RCSERVO_NUM 30
#define RCSERVO_ADDR 0x9ffc400

#define GPIO_NUM 32
#define GPIO_ADDR 0x9ffc600

#define GPIO_REG_NUM (GPIO_NUM+15)/16

Xport 2.0 RC Servo/GPIO Configuration 5

#define GPIO_REG(i) *((volatile unsigned short *)GPIO_ADDR+i)
#define GPIO_DDR(i) GPIO_REG(i)
#define GPIO_DATA(i) GPIO_REG(i+GPIO_REG_NUM)

int Main(void)
 {
 // Check to make sure we are using the correct logic configuration
 if (XP_REG_IDENTIFIER!=0x8015)
 {
 td.Printf("Incorrect logic configuration.\n");
 while(1);
 }

#if 1
 volatile unsigned long d;
 CRCServo servo((unsigned char)RCSERVO_NUM, (unsigned short *)RCSERVO_ADDR);

 // set bounds -- this varies from servo to servo
 servo.SetBounds(0, 64, 196);

 td.Printf("Servo demo\n");

 while(1)
 {
 // move maximum counter-clockwise
 servo.SetPosition(0, 0x00);
 td.Printf("Pos: 0x%x\n", servo.GetPosition(0));
 for (d=0; d<1000000; d++);

 // move middle
 servo.SetPosition(0, 0x80);
 td.Printf("Pos: 0x%x\n", servo.GetPosition(0));
 for (d=0; d<1000000; d++);

 // move maximum clockwise
 servo.SetPosition(0, 0xff);
 td.Printf("Pos: 0x%x\n", servo.GetPosition(0));
 for (d=0; d<1000000; d++);
 }
#else
 unsigned short write = 0, read;

 td.Printf("GPIO demo\n");

 // set first 16 GPIO bits to output
 GPIO_DDR(0) = 0xffff;
 write = 0;
 while(1)
 {
 GPIO_DATA(0) = write;

 // read-back what we just wrote
 read = GPIO_DATA(0);

 if (read!=write)
 {
 td.Printf("ERROR 0x%x 0x%x\n", read, write);

 6 Xport 2.0 RC Servo/GPIO Configuration

 while(1);
 }
 if (write==0)
 td.Printf(".");
 write++;
 }
#endif
 }

